The Rockwell scale is a hardness scale based on the indentation hardness of a material. The Rockwell test determines the hardness by measuring the depth of penetration of an indenter under a large load compared to the penetration made by a preload.[1] There are different scales, denoted by a single letter, that use different loads or indenters. The result is a dimensionless number noted as HRA, where A is the scale letter.
When testing metals, indentation hardness correlates linearly with tensile strength.[2] This important relation permits economically important nondestructive testing of bulk metal deliveries with lightweight, even portable equipment, such as hand-held Rockwell hardness testers.
Contents |
The differential depth hardness measurement was conceived in 1908 by a Viennese professor Paul Ludwik in his book Die Kegelprobe (crudely, "the cone trial").[3] The differential-depth method subtracted out the errors associated with the mechanical imperfections of the system, such as backlash and surface imperfections. The Brinell hardness test, invented in Sweden, was developed earlier—in 1900—but it was slow, not useful on fully hardened steel, and left too large an impression to be considered nondestructive.
The Rockwell hardness tester, a differential-depth machine, was co-invented by Connecticut natives Hugh M. Rockwell (1890–1957) and Stanley P. Rockwell (1886–1940). A patent was applied for on July 15, 1914.[4] The requirement for this tester was to quickly determine the effects of heat treatment on steel bearing races. The application was subsequently approved on February 11, 1919, and holds U.S. Patent 1,294,171. At the time of invention, both Hugh and Stanley Rockwell (not direct relations) worked for the New Departure Manufacturing Co. of Bristol, CT. New Departure was a major ball bearing manufacturer that, in 1916, became part of United Motors and, shortly thereafter, General Motors Corp. After leaving the Connecticut company, Stanley Rockwell, then in Syracuse, NY, applied for an improvement to the original invention on September 11, 1919, which was approved on November 18, 1924. The new tester holds U.S. Patent 1,516,207.[5][6] Rockwell moved to West Hartford, CT, and made an additional improvement in 1921.[6] Stanley collaborated with instrument manufacturer Charles H. Wilson of the Wilson-Mauelen Company in 1920 to commercialize his invention and develop standardized testing machines.[7] Stanley started a heat-treating firm circa 1923, the Stanley P. Rockwell Company, which still exists in Hartford, CT. The later-named Wilson Mechanical Instrument Company has changed ownership over the years, and was most recently acquired by Instron Corp. in 1993.[8]
The determination of the Rockwell hardness of a material involves the application of a minor load followed by a major load, and then noting the depth of penetration, vis a vis, hardness value directly from a dial, in which a harder material gives a higher number. The chief advantage of Rockwell hardness is its ability to display hardness values directly, thus obviating tedious calculations involved in other hardness measurement techniques.
It is typically used in engineering and metallurgy. Its commercial popularity arises from its speed, reliability, robustness, resolution and small area of indentation.
In order to get a reliable reading the thickness of the test-piece should be at least 10 times the depth of the indentation.[9] Also, readings should be taken from a flat perpendicular surface, because convex surfaces give lower readings. A correction factor can be used if the hardness of a convex surface must be measured.[10]
There are several alternative scales, the most commonly used being the "B" and "C" scales. Both express hardness as an arbitrary dimensionless number.
Scale | Abbreviation | Load | Indenter | Use |
---|---|---|---|---|
A | HRA | 60 kgf | 120° diamond cone† | Tungsten carbide |
B | HRB | 100 kgf | 1⁄16-inch-diameter (1.588 mm) steel sphere | Aluminium, brass, and soft steels |
C | HRC | 150 kgf | 120° diamond cone | Harder steels |
D | HRD | 100 kgf | 120° diamond cone | |
E | HRE | 100 kgf | 1⁄8-inch-diameter (3.175 mm) steel sphere | |
F | HRF | 60 kgf | 1⁄16-inch-diameter (1.588 mm) steel sphere | |
G | HRG | 150 kgf | 1⁄16-inch-diameter (1.588 mm) steel sphere | |
†Also called a brale indenter |
The superficial Rockwell scales use lower loads and shallower impressions on brittle and very thin materials. The 45N scale employs a 45-kgf load on a diamond cone-shaped Brale indenter, and can be used on dense ceramics. The 15T scale employs a 15-kgf load on a 1⁄16-inch-diameter (1.588 mm) hardened steel ball, and can be used on sheet metal.
Readings below HRC 20 are generally considered unreliable, as are readings much above HRB 100.
Several other scales, including the extensive A-scale, are used for specialized applications. There are special scales for measuring case-hardened specimens.